
Ordinary differential equations with superposition formulae: II. Parabolic subgroups of the

symplectic group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 425

(http://iopscience.iop.org/0305-4470/35/2/318)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 425–434 PII: S0305-4470(02)23787-7

Ordinary differential equations with superposition
formulae: II. Parabolic subgroups of the
symplectic group

A V Penskoi
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Introduction

This paper is a continuation of a previous paper by the same author [1] as explained by the
title of the present paper. We refer to the introduction and section 1 of [1] for preliminaries
and necessary general information about ODEs with superposition formulae.

We consider the case when G is the complex symplectic group Sp(2n) and M is a
homogeneous space Sp(2n)/P, where P is an arbitrary parabolic subgroup of Sp(2n). Thus,
the action of G on G/P is (in general) non-primitive.

Some particular cases were investigated earlier by different authors. The case when P
is a maximal parabolic subgroup was investigated in [2]. The choice of a maximal parabolic
subgroup P corresponds to a primitive action of G. One particular choice of a maximal
parabolic subgroup P gives a symplectic matrix Riccati equation investigated in detail in [3],
where the superposition formulae are found.

Our goal is to construct explicitly the ODEs with superposition formulae for an arbitrary
parabolic subgroup P. We will show a relation of these ODEs to the matrix Riccati equations.

The case of the symplectic groups turns out to be much more subtle than that of the
SL(N,C) groups. The geometry of the symplectic group is more complicated than that of the
linear one. Already on the level of primitive group actions the corresponding nonlinear ODEs
with superposition formulae will in general have quartic nonlinearities rather than quadratic
ones. Thus we are no longer dealing only with matrix Riccati equations.
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As a consequence the relatively simple matrix methods of [1] must be replaced by much
more sophisticated ones. We shall make use of the methods of linear algebraic groups, i.e.
the root systems, Bruhat paving, etc. The methods developed here for symplectic Lie groups
are applicable to arbitrary complex simple Lie groups, be they symplectic, orthogonal, or
exceptional.

1. The symplectic group, parabolic subgroups and generalized flag varieties

In this section we fix our conventions and recall some standard results about linear algebraic
groups concerning the complex symplectic group Sp(2n). Our basic sources are [4, 5].

By Ik we denote the identity k × k matrix. By Jk we denote a k × k matrix such that
(Jk)ij = δi,k−i+1. We write simply I or J if we have no need to show the matrix size. By 0k we
denote the zero k × k matrix.

The symplectic group Sp(2n) is a subgroup of GL(2n) preserving a given antisymmetric
non-degenerate bilinear form S. In this section we use the standard choice

S =
(

0 In

−In 0

)

but in the other sections we sometimes use other choices of S. Thus Sp(2n) = {X ∈
GL(2n) |XSXT = S}.

As a maximal torus T ⊂ Sp(2n), we choose a subgroup of symplectic matrices of the
form diag

(
x1, . . . , xn, x

−1
1 , . . . , x−1

n

)
. As a Borel subgroup B ⊂ Sp(2n), we choose the

subgroup of symplectic matrices of the form(
A B

0 C

)

where A is an upper triangular matrix.
Define a basis of characters of T by

ei
(
diag

(
x1, . . . , xn, x

−1
1 , . . . , x−1

n

)) = xi.

Thus our root system R is

R = {±2ei,±ei ± ej | 1 � i, j � n, i 
= j }
the system of positive roots R+ is

R+ = {2ei, ei ± ej | 1 � i < j � n}
and the corresponding basis D is

D = {ei − ei+1 | 1 � i � n− 1} ∪ {2en}.
Any parabolic subgroup is conjugate to a unique one containing B. Thus we consider only

parabolic subgroups containing B.
Parabolic subgroups are in one-to-one correspondence with subsets I ⊂ D. The explicit

description for the symplectic group is the following. Let us denote elements of D by numbers;
ei − ei+1 corresponds to i and 2en corresponds to n. Thus we write D = {1, . . . , n}. Consider
D − I and write the elements of D − I as follows:

D − I = {a1, a1 + a2, . . . , a1 + · · · + as}.
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There are two cases:

Case I. The case a1 + · · · + as = n. Then the corresponding parabolic subgroup P consists of
symplectic matrices of the form(

A B

0 C

)
where

A =



A11 A12 . . . A1s

0 A22 . . . A2s

...
. . .

...

0 0 . . . Ass




and Aij is an ai × aj matrix.

Case II. The case a1 + · · · + as 
= n. Let as+1 = n − a1 − · · · − as . Then the corresponding
parabolic subgroup P consists of symplectic matrices of the form(

A B

C D

)
where

A =



A11 A12 . . . A1,s+1

0 A22 . . . A2,s+1

...
. . .

...

0 0 . . . As+1,s+1




Aij is an ai × aj matrix,

C =




0 . . . . . . 0
...

. . .
...

... 0 0
0 . . . 0 Cs+1,s+1




and Cij is an as+1 × as+1 matrix.

By W we denote the Weyl group W = N(T )/T and by sα ∈ W we denote a reflection
defined by α ∈ R. By ẇ we denote a representative ofw ∈ W =N(T )/T inN(T ) ⊂ Sp(2n).
Let l(w) be the length of w ∈ W .

Let Y = Sp(2n)/P , where P is a parabolic subgroup defined by I ⊂ D. Let

W ′
I = {w ∈ W | l(wsα) > l(w) for α ∈ I ⊂ D}.

Now we can formulate the theorem which is most important for us.

Theorem 1. [4]

(i) Sp(2n) has the following decomposition

Sp(2n) =
⋃
w∈W

BẇP.

(ii) Let Yw be the image of BẇP under the canonical projection Sp(2n) → Y . Then Y is a
disjoint union of the Yw,w ∈ W ′

I .
(iii) Yw(w ∈ W ′

I ) is a locally closed subvariety of Y isomorphic to C
l(w).
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Let w1 be the longest element of W ′
I . The explicit form of ẇ1 is the following:

ẇ1 =
(
A B

C D

)
where A, B, C, D depend on the case of parabolic subgroups mentioned above.

In case I A = 0, D = 0, C is a block-diagonal matrix diag
(
Ja1 , Ja2 , . . . , Jas

)
, and

B = −C. In case II A and C are block-diagonal matrices, A = diag
(
0, . . . , 0, Ias+1

)
, C =

diag
(
Ja1 , . . . , Jas , 0as+1

)
,D = A and B = −C.

Yw1 is called the big Bruhat cell, dimYw1 = dimY and Yw1 is isomorphic to C
dim Y . Yw1

is the image of Bẇ1P = Ru(P )ẇ1P , where Ru(P) is a unipotent radical of P isomorphic to
C

dim Y . Thus each point p of Yw1 is a P-coset in Bẇ1P = Ru(P )ẇ1P . In this coset there
exists a unique element Aẇ1, where A ∈ Ru(P), or equivalently for each element K ∈ Bẇ1P

there exists a unique L ∈ P such that KL ∈ Ru(P )ẇ1.

2. Explicit formulae for the ODEs with superposition formulae

We have the canonical action of Sp(2n) on the space Y = Sp(2n)/P given by the formula

g · hP = ghP g, h ∈ Sp(2n).

This action gives us a homomorphism from sp(2n) to the algebra of vector fields on Y.
Our goal is to find explicit formulae for this homomorphism using suitable coordinates on Y.

We can construct coordinates as follows: in the P-coset corresponding to p ∈ Yw1 we
have a unique matrix of the form Aw1, where A ∈ Ru(P). Let us denote this matrix A by K (p).
If we have a fixed isomorphism ( : Ru(P ) → C

dim Y then ((K(p)) defines coordinates
in Yw1 ⊂ Y . Thus we have a class of coordinates in Yw1 corresponding to isomorphisms
between Ru(P ) and C

dim Y . Our natural intention is to find such a coordinate system that our
homomorphism has a simple formula, so we must find a convenient isomorphism (. Let us
concentrate now on K (p), we will choose ( later.

To describe the action of Sp(2n) on Y we must find K(gp). Let us consider a point
p ∈ Yw1 and g ∈ Sp(2n) such that gp ∈ Yw1 . Let us take K(p)w1 as a representative of p
in the corresponding P-coset. After multiplication by g we obtain gK(p)w1. We know that
K(gp)w1 is a unique element of the Ru(P )w1 in the coset containing gK(p)w1, thus there
exists a unique element L ∈ P such that

K(gp)w1 = gK(p)w1L.

Consider a path g(t) ∈ Sp(2n) such that g(0) = I, d
dt g(t)|t=0 = X for some X ∈ sp(2n).

Let us find X̃ = d
dt K(g(t)p)|t=0.

X̃ = d

dt
g(t)K(p)w1L(t)w

−1
1

∣∣
t=0

= g′(t)K(p)w1L(t)w
−1
1

∣∣
t=0 + g(t)K(p)w1L

′(t)w−1
1

∣∣
t=0

= XK(p) + K(p)w1L
′w−1

1

where L′ = L′(0) ∈ p is uniquely determined by the condition that X̃ ∈ u, where by u we
denote the Lie algebra of Ru(P ).

Thus if we want to find X̃ given K(p) and X, we have to find L′. Let us do a change of
basis. The key idea of this change is transformingRu(P ) to some subgroup of lower-triangular
matrices. Let us do the change of basis defined by

F =
(

0 I

R 0

)
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where R is a block-antidiagonal matrix

R =




0 . . . Ias
... . .

. ...

Ia1 . . . 0


 or R =




0 . . . Ias+1

... . .
. ...

Ia1 . . . 0




in cases I and II, respectively.
If A ∈ Sp(2n) preserves S, i.e. ASAT = S, then A1 = FAF−1 preserves S1 = FSF T ,

i.e. A1S1A
T
1 = S1. Thus A1 is an element of the group Sp(2n, S1) of matrices preserving S1.

Using our transformation we obtain

X̃1 = X1K1(p) + K1(p)L
′
1 (1)

where X1 = FXF−1,K1(p) = FK(p)F−1, L′
1 = Fw1L

′w−1
1 F−1 and X̃1 = FX̃F−1.

Thus X1 is an element of sp(2n, S1), i.e. the Lie algebra of Sp(2n, S1), sp(2n, S1) ={
X
∣∣XS1 + S1X

T = 0
}
.

The matrix K1(p) is an element of K̃ = FRu(P )F
−1. It is easy to check that K̃ is a

subgroup of Sp (2n, S1) consisting of matrices of the form(
A 0
B C

)
where in case I, A and C are block lower-diagonal matrices,

A =



Ia1 0

. . .

∗ Ias


 C =



Ias 0

. . .

∗ Ia1


 .

In case II A and C are also block lower-diagonal matrices,

A =



Ia1 0

. . .

∗ Ias+1


 C =



Ias+1 0

. . .

∗ Ia1




but in case II there is also a condition on B. B must be of the form(∗ 0as+1

∗ ∗
)
.

The matrix L′
1 is an element of P̃ = Fw1Pw

−1
1 F−1. It is easy to check that P̃ is a

subgroup of Sp (2n, S1) consisting of matrices of the form(
A B

C D

)
where A and D are block upper-diagonal matrices,

A =



A11 . . . A1q

...
. . .

...

0 . . . Aqq


 D =



D11 . . . D1q

...
. . .

...

0 . . . Dqq


 ,

q = s in case I and q = s + 1 in case II, Aij is a ai × aj matrix, Dij is a as−i+1 × as−j+1 matrix
in case I or a as−i+2 × as−j+2 matrix in case II, in case I C is a zero matrix, in case II C has the
form (

0 ∗
0 0

)
where * is some as+1 × as+1 matrix.
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The matrix X̃1 is an element of the Lie algebra of K̃ , we will denote this algebra by k̃.
Now our problem is the following: given X1 ∈ sp(2n, S1) and K1(p) ∈ K̃ , find X̃1 ∈ k̃

using formula (1), where L′
1 is some element of P̃ uniquely determined by the condition

X̃1 ∈ k̃.
With this we are now able to find L′

1 explicitly. Let us divide X1 into blocks

X1 =



X11 . . . X1r

...
. . .

...

Xr1 . . . Xrr




where the blocks Xij are defined in the following way: in case I we have r = 2s, Xij is a bi ×
bj matrix, where bi = ai for 1 � i � s and bi = a2s−i+1 for s + 1 � i � 2s, in case II we have r =
2s + 2, Xij is a bi × bj matrix, where bi = ai for 1� i � s + 1 and bi = a2s−i+3 for s + 2 � i �
2s + 2.

Let us divide K1( p) into blocks in the same way, then we obtain

K1(p) =



Ib1 0 . . . 0

K21
. . .

. . .
...

...
. . .

. . . 0
Kr,1 . . . Kr,r−1 Ibr




where r and bi are defined as above, Kij is a bi × bj matrix, and in case II it is necessary to
replace Ks+2,s+1 by the zero matrix of the same size.

Let us also divide L′
1 into blocks in the same way, we obtain

L′
1 =



L11 . . . . . . L1,2s

0
. . .

...

...
. . .

. . .
...

0 . . . 0 L2s,2s




in case I, and

L′
1 =




L11 . . . . . . . . . . . . . . . . . . L1,2s

0
. . .

...

...
. . .

. . .
...

... 0 Ls+1,s+1
...

... 0 Ls+2,s+1 Ls+2,s+2
...

... 0 0 0
. . .

...

...
. . .

. . .
...

0 . . . . . . . . . . . . . . . 0 L2s,2s




in case II. In both cases Lij is a bi × bj matrix, bi is defined above.
In the following lemma and theorem we use the convention that for a matrix A one has

A0 = I.

Lemma 1. L′
1 can be found using the following formulae.
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In case II for i 
= s + 1 and in case I we have

L1,i

...

Li,i


 = −

(
i−1∑
k=0

(−1)kMk

)


X1,i

...

Xi,i


 +



X1,i+1 . . . X1,r

...
...

Xi,i+1 . . . Xi,r





Ki+1,i

...

Kr,i






where

M =




0b1 . . . . . . 0

K21
. . .

...

...
. . .

. . .
...

Ki,1 . . . Ki,i−1 0bi




bi and r are defined above, and in case II if Ks+2,s+1 is in M, then replace Ks+2,s+1 by the zero
matrix of the same size.

In case II when i = s + 1 we have


L1,s+1

...

Ls+2,s+1


 = −

(
s+1∑
k=0

(−1)kMk

)



X1,s+1

...

Xs+2,s+1


 +




X1,s+3 . . . X1,2s+2

...
...

Xs+2,s+3 . . . Xs+2,2s+2





Ks+3,s+1

...

K2s+2,s+1






where

M =




0b1 0 . . . . . . 0

K21
. . .

...

...
. . .

. . .
...

Ks+1,1 . . . Ks+1,s−1 0bs+1

...

Ks+2,1 . . . Ks+2,s 0 0bs+2



. (2)

Proof. Let us consider case I, case II is analogous.
Let us divide X̃1 in blocks X̃ij in the same way as X1. Let us consider an ith column of

blocks of X̃1. From (1) we have



X̃1,i

...

X̃2s,i


 = X1




0
...

0
Ibi

Ki+1,i

...

K2s,i




+ K1(p)




L1,i

...

Li,i

0
...

0



. (3)

It follows from the condition X̃1 ∈ k̃ that X̃1,i = 0, . . . , X̃i,i = 0. Using (3) we obtain from
these conditions that

0 =



X1,i

...

Xi,i


 +



X1,i+1 . . . X1,2s

...
...

Xi,i+1 . . . Xi,2s





Ki+1,i

...

K2s,i


 +



Ib1 . . . . . . 0

K21
. . .

...

...
. . .

. . .
...

Ki,1 . . . Ki,i−1 Ibi





L1,i

...

Li,i


 .
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Using the fact that (I + A)−1 = ∑∞
k=0(−1)kAk if A is a nilpotent matrix, we can solve this

linear equation and obtain the lemma statement. �

Now we are able to find X̃1 explicitly in terms of blocks of X1 and K1(p). So we see
that it is more convenient to choose our isomorphism ( using K1( p). One can check that as
coordinates we can take the blocks Kij for 2 � i � r − 1, 1 � j � min(i − 1, r − i) and the
‘symmetric parts’, Ki,2s−i+1 + KT

i,2s−i+1 for s + 1 � i � 2s in case I, and Ki,2s−i+3 + KT
i,2s−i+3

for s + 3 � i � 2s + 2 in case II. However, it is more convenient to write our ODEs using all
the matrices Kij as variables but with constraints given by the condition K1(p) ∈ Sp(2n, S1).

Thus, using (1), formulae from the lemma 1, and the condition K1(p) ∈ Sp(2n, S1) we
obtain the final formulae for our ODEs.

Theorem 2. The equations with superposition formulae related to the canonical action of
Sp(2n) on Sp(2n)/P are the following.

In case I we have

d

dt



Ki+1,i

...

Kr,i


 =



Xi+1,i

...

Xr,i


 +



Xi+1,i+1 . . . Xi+1,r

...
...

Xr,i+1 . . . Xr,r





Ki+1,i

...

Kr,i




−



Ki+1,1 . . . Ki+1,i

...
...

Kr,1 . . . Kr,i






i−1∑
k=0

(−1)k




0b1 0 . . . 0

K21
. . .

. . .
...

...
. . . 0

Ki1 . . . Ki,i−1 0bi




k



×





X1,i

...

Xi,i


 +



X1,i+1 . . . X1,r

...
...

Xi,i+1 . . . Xi,r





Ki+1,i

...

Kr,i




 (4)

where 1 � i � 2s − 1, r and bi are defined above, Xij are functions of t such that
X1 = (Xij ) ∈ sp(2n, S1).

In case II the equation is given for 1 � i � 2s + 1, i 
= s + 1 by the same formulae (4),
but Ks+2,s+1 must be replaced by a zero matrix of the same size. In the case i = s + 1 we have

d

dt



Ks+3,s+1

...

K2s+2,s+1


 =



Xs+3,s+1

...

X2s+2,s+1


 +



Xs+3,s+3 . . . Xs+3,2s+2

...
...

X2s+2,s+3 . . . X2s+2,2s+2





Ks+3,s+1

...

K2s+2,s+1




−



Ks+3,1 . . . Ks+3,s+2

...
...

K2s+2,1 . . . K2s+2,s+2



[

s+1∑
k=0

(−1)kMk

]

×






X1,s+1

...

Xs+2,s+1


 +




X1,s+3 . . . X1,2s+2

...
...

Xs+2,s+3 . . . Xs+2,2s+2





Ks+3,s+1

...

K2s+2,s+1






where M is the same matrix as in formula (2).
The variables Kij are not independent, they satisfy the quadratic constraint

K1(p)S1K
T
1 (p) = S1.
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Proof. Substitute the results of lemma 1 in formula (1). �
Now let us remark that in case I our ODEs given by the formulae (4) coincide with the

formulae for the ODEs with superposition formulae related to the canonical action of SL(2n)
on a homogeneous space SL(2n)/p (see [1]), but with the quadratic constraints added. So
we can remark as in [1] that the system of equations (4) can be reduced to the matrix Riccati
equations. Let us formulate this result exactly. Let us recall that a matrix Riccati equation is
an equation of the form

d

dt
W(t) = A(t) + B(t)W(t) + W(t)C(t) + W(t)D(t)W(t) (5)

where A, B, C, D and W are matrices of appropriate sizes. The matrix Riccati equation is an
equation with a superposition formula. Let us define matrices Wi as

Wi =

Ki+1,i

. . .

Kr,i


.

Then we have the following proposition.

Proposition 1. The equations (4), 1 � i � 2s − 1, giving the ODEs with superposition
formulae in case I, can be rewritten in the form

d

dt
Wi = Ai + BiWi + WiCi + WiDiWi

where A1, . . . ,D1 are functions of t, and for i > 1 Ai, . . . ,Di are functions of t and
W1, . . . ,Wi−1. Thus we obtain the system of matrix Riccati equations (5) for Wi such that in
the equation forWi the matrices Ai, . . . ,Di depend on the ‘previous’ matricesW1, . . . ,Wi−1.
There are also quadratic constraints on Wi .

The proof of this proposition and the explicit form of Ai, . . . ,Di can be found in [1]. It
is necessary to remark that the coefficients Ai, . . . ,Di are not arbitrary, there are conditions
for them, see our example below.

Thus in case I the solving of our ODE can be reduced to the solving of matrix Riccati
equations.

Unfortunately, it is not so simple in case II because proposition 1 is not true. Indeed, for
i 
= s + 1 we have the same thing but it is impossible to write the equation for Ws+1 in the form
described in proposition 1.

The simplest example is the parabolic subgroup corresponding to s = 1, a1 = n. This
corresponds to case I in our classification. We have

K1 =
(
In 0
K21 In

)
.

Equation (4) in this case is the following:
d

dt
K21 = X21 + X22K21 − K21X11 −K21X12K21. (6)

The constraint K1(p)S1K
T
1 (p) = S1 in this case is not quadratic (as in general), it is linear,

namely KT
21 −K21 = 0, i.e. K21 is symmetric. The condition X1 ∈ sp(2n, S1) means that X12

and X21 are symmetric and X22 = −XT
11. Thus we see that this case gives us the symplectic

Riccati equation studied in [3]:
d

dt
W(t) = A(t) + B(t)W(t) + W(t)C(t) + W(t)D(t)W(t)

where W,A and D are symmetric, and BT = C. Indeed, it is sufficient to substitute in (6)
K21 = W,X21 = A,X22 = B,X11 = −C and X12 = −D. The conditions that W , A and D
are symmetric and BT = C follow from the conditions on K21 and Xij .
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